statcomp: An R package to quantify statistical complexity and information of time series to distinguish chaos from noise.
Related papers:
Lopez-Ruiz, R., Mancini, H. L. & Calbet, X., 1995. A statistical measure of complexity. Physics Letters A, 209. doi:10.1016/0375-9601(95)00867-5.
Bandt, C. and Pompe, B., 2002. Permutation entropy: a natural complexity measure for time series. Physical Review Letters, 88(17). doi:10.1103/PhysRevLett.88.174102.
Rosso, O. A., Larrondo, H. A., Martin, M. T., Plastino, A., & Fuentes, M. A. (2007). Distinguishing noise from chaos. Physical Review Letters, 99(15). doi:10.1103/PhysRevLett.99.154102.
Olivares, F., Plastino, A. and Rosso, O.A., 2012. Ambiguities in Bandt-Pompe's methodology for local entropic quantifiers. Physica A: Statistical Mechanics and its Applications, 391(8). doi:10.1016/j.physa.2011.12.033.
Sippel, S., Lange, H., Mahecha, M. D., Hauhs, M., Bodesheim, P., Kaminski, T., Gans, F. & Rosso, O. A. (2016) Diagnosing the Dynamics of Observed and Simulated Ecosystem Gross Primary Productivity with Time Causal Information Theory Quantifiers. PLOS ONE, accepted. doi:10.1371/journal.pone.0164960.
Figure 1. Exemplary illustration of different time series in the entropy-complexity plane.
install.packages("statcomp", repos="http://R-Forge.R-project.org")
… or retrieve from CRAN (https://cran.r-project.org/web/packages/statcomp/ ):
install.packages("statcomp")
If you use statcomp in scientific publications, please cite:
Sippel, S., Lange, H., Mahecha, M. D., Hauhs, M., Bodesheim, P., Kaminski, T., Gans, F. & Rosso, O. A. (2016) Diagnosing the Dynamics of Observed and Simulated Ecosystem Gross Primary Productivity with Time Causal Information Theory Quantifiers. PLOS ONE, accepted. doi:10.1371/journal.pone.0164960.
The package has been developed at the Max Planck Institute for Biogeochemistry, Jena, Germany.